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The asymptotic form of the wave function for (S-wave) electron-hydrogen

Abstract

‘ ionization deduced by Peterkop and by Rudge and Seaton is examined and found

| not to obey the correct boundary condition at r; = ro. In addition the
quantity by which it differs from being an exact solution becomes infinitely
large as r; — r>. On the basis of the zeroth order problem of the nonadiabatic
theory of electron-hydrogen scattering other solutions are shown to exist.
Within this approximation we show how a fully satisfactory solution of the
Schrodinger equation can be constructed, and we indicate that it leads to an
E3/ 2 threshold law for ionization. Furthermore, it lends itself to a natural -

generalization for the asymptotic form of the full S-wave problem which continues

to suggest a nonlinear threshold dependence for the complete problem.
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The problem of the ionization of atomic hydrogen by electron impact is a
fundamental problem dealing with the separated configuration of three charged
particles. In addition to its theoretical interest, the problem is of consid-
erable current importance because recent observations of the elastic resonances
in electron-hydrogen scatteringl are limited in accuracy because of the uncer-
tainty of the shape of the ionization cross section. Specifically, this
inaccuracy stems from the uncertainty of the nature of the threshold energy
dependence of the ionization cross section, whose starting point is a key
reference point in determining the experimental energy scale.

Although there have been numerous approximate calculations of the
ionization cross section of atomic hydrogen by electron impact, it is only
comparatively recently that attempts have been made to put this problem orn a
more rigorous theoretical footing. Peterkop2 and somewhat later, but largely
independently, Rudge and SeatonB’u have derived an asymptotic form of the wave
function. This asymptotic form can then be used to determine a phase factor
which must be known in order that an independently derived relation between

> be useful. In addition this

direct and exchange ionization amplitudes
asymptotic form is, in the important region of configuration space, proportional
to the complex conjugate of a function ¢, a product of two Coulomb waves whose
charges depend on the vector velocities of the outgoing particles, which is

the basis upon which the linear threshold law is deduced.6

The purpose of this note is to point out inadequacies in the above asymptotic

form, and to show by means of a simpler model that the neglect of certain terms
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which must be made in deriving it is not Jjustified. The two arguments taken
together strongly indicate that:gZymptotic form is not correct. This in turn
has obvious negative implications about the above mentioned phase factor and
about the derivation of a linear threshold law.

We restrict ourselves to the total S-wave system for which the Schrédinger

equation can be written (energies in rydbergs, lengths in Bohr radii):
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where'yris r; r> times the S-wave function Y. The previous analyses have
been made in terms of hyperspherical coordinates:
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In terms of these coordinates, the S-wave Schrodinger equation becomes
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The asymptotic form of references 2 and 3, can be derived from (3) vy

neglecting all terms which depend on p =. In this way Equation (3) becomes

an ordinary differential equation in p whose solution depends only parametrically

on the remaining coordinates o and €;,. In particular, that solution which

represents an outgoing radial current in this approximation is
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where f(a,elg) is a function whose specification we need not here consider.
If one operates on this function with the p 2 terms that were neglected in

Equation (3), one finds the leading order term is
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This remainder term being also essentially of order p 2 appears consistent with
the neglect of such terms in the first place. (But see below.)

Tt should be noted that this argument is not foolproof, because it is possible
that (a) a solution with asymptotic form of Equation (5) satisfying all other
required boundary conditions does not exist, (b) thereis an other solutions for
which the terms in gquestion cannot be neglected. Indeed if (a) is the case,

then (b) follows.




If (5) were the correct asymptotic form, it would have to be valid for
both space symmetric (singlet) and space antisymmetric (triplet) solutions.
We shall consider the singlet case in this paragraph. The phase in (5) depends
on W. But from (4), W is proportional to the total potential energy and there-
fore has singularities where the potential has singularities; one of these is
at ri12 = 0, which can occur for large values of r; and‘gg where Equation (5)
is supposed to be valid. Nor can anything in f(d, 0,5) cancel this singularity
since the W term is multiplied by a function of p. However, a correct quantum
mechanical solution has a eusp where the potentials are singular.7

Of even greater significance is the fact that the quantity by which this
function differs from being an exact solution, the expression (6), is (for a
given p) even more singular than the potential itself at4;l = Io.

Peterkop8 has stated that this singularity recedes to infinity by which
we presume he means that since (5) represents an asymptotic expansion, the region
where the asymptotic form becomes valid demands p be  indefinidtely large as Iy - To.
This argument 1s circular: there is a correct asymptotic form of the wave
function including the region r; = ro; the problem is, given the Schrodinger
equation as a partial differential equation, to find that solution. When one
has found that solution, one can inquire as to whether it is close to another
(approximate) solution of (5) which does not obey that boundary condition.
In fact the form of (5) is reminiscent of a WKB type of approximation,and the
divergence of the phase along singularities of the potential is a characteristic
defect of that approximstion. The crucial question of whether a WKB description
is valid depends on the energies and masses of the particles involved. We

shall talk of the energy dependence below, but it is clear that the approximation
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is much more compelling for, say, proton-hydrogen ionization than for e-H

jionization.
We shall next show by considering a simplified model that there almost

certainly are solutions of (3) for which one cannot neglect p 2 terms even

in the asymptotic region. The model consists of replacing W in Equation (3)

by its spherical average Wo = (1/2) [ W sin 0,5d0;5:
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It is clear that going through the same arguments which led to §, would in

this case lead to a solution with asymptotic form

e %(0)_ /O(o(/ /[t/O4- ij(’fﬂ j/ (5a)

Here the diverging phase along r; = rz is transformed into a cusp (disconmtinuity
of slope) along r; = rz, but in essence inadequacy remai:as.7 In addition we
can here write down exact solutions neglecting no terms in W, equation. An

example of such a solution is:
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and Fé2)(x) is the £ = O outgoing wave Coulomb function:
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Note that for Yéj) to be a solution, one cannot neglect the p 232 /30”
term in the model Schrodinger equation. In particular 32/30% brings down p©
which cancels the p = factor making this term non-vanishing even in the
asymptotic region. (Thus this term, in spite of being formally of the order
p-z, is in fact more important than the Coulombic potential term.)

Considering the totality of solutions (all q;, go for a given E), one
cannot say beforehand whether the sum yields a function for which one can
neglect the Bz/adg term. In the case of short range forces the elementary
ionization (S-wave) solutions are
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for which one can also not neglect the 82/8a2 term. Nevertheless when one

sums the totality of such solutions one arrives at a function5

lin =) = /,i,ff} e"/F/o

S

[ J/oVL s

(11)

for which one can neglect the p_252/aa2 derivative. In the case of the Coulomb
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forces, however, the inadequacy of (5) and (5a) along r, =T (r; = r2) shows
that the composite solution will not allow this second derivative to be neg-
lected. (Notice that (11) does not contain these difficulties along the

Iy = T2 boundary.)

When the model Schrodinger equation is written in terms of r; and ro,

@
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it can be seen to be the zeroth order problem of the non-adiabatic theory of
electron-hydrogen scattering.9 For energies below the ionization threshold

(E < 0) exact solution can be written in terms of exact separable solutions:

Do oy (13)
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and F refers to the £ = 0 Coulomb wave function regular at the origin. The
point is that the coefficients in (13) are determined by the condition the
singlet or triplet boundary condition along r; = ro be smoothly satisfied.7

Utilizing the continuity conditions, and the conservation of current, we have

analytically shown in both the singlet and triplet cases that for energies near
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ionization threshold Cn o n-3/2, which implieslo that the threshold dependence

is proportional to E3/2 for the zeroth order problem.

Above threshold it would be tempting to augment (13) with terms of the

form
(E -
[ et B

with the requirement that C(gs) be chosen so that the boundary condition along
r; = ro be satisfied. However, such terms do not obey the requirement of
outgoing current for the inner particle (rs). It is clear in fact that this

asymptotic condition demands a sum of functions of the type of Eq. (10):

rs o
/ [ﬂ/jlj € g th/ﬁ) C/fz , (1ka)

with C(gs) still determined by the boundary condition along r; = ro; but unless
a miracle happened this function will not be well-behaved at ro = 0. The
conclusion from all of this is that the expansion in terms of separable pro-
ducts (en the energy shell) is manifestly not complete in the ionization region.

One thing that can be done is to imagine a variational counterpart of (1lka)

of the form, say,

[E Coh; + 309, )L
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The boundary condition along ro = O is now automatically satisfied and the
double set of coefficients B(gs) and C(gs) are now determined by the condition
that (14b) be a solution of the zeroth order problem and that it satisfy the
boundary condition that r; = ro. In this way we will not have avoided the
boundary condition requirement along r; = ro and the resultant solution will
not be subject to the criticism of (and therefore will be different from) Eq.
(5a).

The individual solutions in (14) describe, in a clear way, the quantum
mechanics of the physical situation. The scattered particle moves as an out-
going (free) spherical wave whereas the inner particle moves in the Coulomb
field of the nucleus. That this ¢ontinues to be the case when one considers
the full (W) interaction has not been proven. In fact the semi-classical
argument (which corresponds to this function #* in the first approximation)
contends that the outer particle sees an rl-l potential coming from the fact
it sees (in the first approximation) a dipole field of the nucleus and the
inner electron, the dipole moment of which expands as r; itself (due to the
inner and outer particle coming out with a constant ratio of their velocities).
Weghowever, consider this argument to be erroneous,because from the quantum
mechanical viewpoint in order to prepare an incident beam of a given energy,
one requires a longer and longer wave train. Thus the emerging particles are
described by spherical waves, and what the outer particle sees is not an inmer
particle in a definite orbit but a smeared out probability amplitude which has
the effect ultimately of screening the outer electron from the nucleus. This

consideration is particularly relevant near threshold where the wave lengths

of both emergent particles are large. This is the physical basis upon which
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we believe that not only is the asymptotic form of ¥, in Equation (5) not

completely correct, which we have already shown, but substantially incorrect

in the threshold region.
-
Finally, these considerations show that one cannot neglect the /a'zsin FjL

9//291_(,Ltﬂ @7>>(ﬂ/{5éhL term in the full S-wave problem anymore than one
can neglect the ‘fflf/)ax2ferm in the zeroth order problem. In fact we can
find solutions in the presence of this term providing we retain W, in place
of W. A typical solution is /é_-(’;,n)/_?;)(rl) /? (et ;)  wnere /{/ and
f;(z) are the £th spherical Hankel function and outgoing wave Coulomb wave
function respectively. The most general such wave function incorporates the

features of the previous mathematical and physical arguments, and thus we

believe it represents the correct asymptotic form of the S-wave function:

/2
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This form is ;- dependent, of course, but being a product of free (spherical)

waves and Coulomb waves it would suggest a nonlinear threshold law for lonization.
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